Beyond parametric score normalisation in biometric verification systems
نویسندگان
چکیده
Similarity scores represent the basis for identity inference in biometric verification systems. However, because of the so-called miss-matched conditions across enrollment and probe samples and identity-dependent factors these scores typically exhibit statistical variations that affect the verification performance of biometric systems. To mitigate these variations, scorenormalisation techniques, such as the z-norm, the t-norm or the zt-norm, are commonly adopted. In this study, the authors study the problem of score normalisation in the scope of biometric verification and introduce a new class of non-parametric normalisation techniques, which make no assumptions regarding the shape of the distribution from which the scores are drawn (as the parametric techniques do). Instead, they estimate the shape of the score distribution and use the estimate to map the initial distribution to a common (predefined) distribution. Based on the new class of normalisation techniques they also develop a hybrid normalisation scheme that combines non-parametric and parametric techniques into hybrid two-step procedures. They evaluate the performance of the non-parametric and hybrid techniques in face-verification experiments on the FRGCv2 and SCFace databases and show that the non-parametric techniques outperform their parametric counterparts and that the hybrid procedure is not only feasible, but also retains some desirable characteristics from both the non-parametric and the parametric techniques.
منابع مشابه
An Investigation of F-ratio Client-Dependent Normalisation on Biometric Authentication Tasks
This study investigates a new client-dependent normalisation to improve biometric authentication systems. There exists many client-de-pendent score normalisation techniques applied to speaker authentication, such as Z-Norm, D-Norm and T-Norm. Such normalisation is intended to adjust the variation across different client models. We propose “F-ratio” normalisation, or F-Norm, applied to face and ...
متن کاملMeasuring and mitigating targeted biometric impersonation
This study is concerned with the reliability of biometric verification systems when used in forensic applications. In particular, when such systems are subjected to targeted impersonation attacks. The authors expand on the existing work in targeted impersonation, focusing on how best to measure the reliability of verification systems in forensic contexts. It identifies two scenarios in which ta...
متن کاملEER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks
Biometric authentication is a process of verifying an identity claim using a person’s behavioural and physiological characteristics. Due to the vulnerability of the system to environmental noise and variation caused by the user, fusion of several biometric-enabled systems is identified as a promising solution. In the literature, various fixed rules (e.g. min, max, median, mean) and trainable cl...
متن کاملEnhancement of multimodal biometric segregation using unconstrained cohort normalisation
This paper presents an investigation into the effects, on the accuracy of multimodal biometrics, of introducing unconstrained cohort normalisation (UCN) into the score-level fusion process. Whilst score normalisation has been widely used in voice biometrics, its effectiveness in other biometrics has not been previously investigated. This study aims to explore the potential usefulness of the sai...
متن کاملA Contribution to Multi-Modal Identity Verification Using Decision Fusion
The contribution of this paper is to compare paradigms coming from the classes of parametric, and non-parametric techniques to solve the decision fusion problem encountered in the design of a multi-modal biometrical identity verification system. The multi-modal identity verification system under consideration is built of d modalities in parallel, each one delivering as output a scalar number, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Biometrics
دوره 3 شماره
صفحات -
تاریخ انتشار 2014